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RESPONSE OF AN ANHA~NIC CRYSTAL TO 

A LOCALIZED INITIAL II~ETUS 

A. S. Dolgov UDC 534+539.2 

~lere is much interest in the time dependence of the atomic displacements in a crystal 
after an initial impetus because of the need to examine the interactions of an atomic-par- 
ticle beam with a solid surface, which includes nonstationary deformation after localized 
action of impact type. There are several papers dealing with the response of crystals to 
external shocks or with discussion of the physical effects associated with the response func- 
tion [1-4]. Nearly all theoretical papers on this topic employ the harmonic approximation. 
The role of slight anharmonicity has been discussed in [5]. 

However, most of the physical processes involved here are based on levels of initial 
excitation such that one cannot assume that anharmonic effects are small or unimportant. 
~lerefore, major interest attaches to proper incorporation of the nonlinearity in the inter- 
action. Numerical calculations, although useful, are only partial in character and cannot 
completely replace analytical consideration designed to elucidate the general features. Here 
we present a certain class of solutions for the displacements in a decidedly nonlinear struc- 
ture. 

We take a structure with a p~er-law dependence for the potential energy on the relative 
displacements, which under certain conditions given belou allows one to determine the main 
features in the process. We give the following form to the equations of dynamics for a one~ 
dimensional atomic chain with interaction between nearest neighbors: 

d:.e, /dt~ ~ - a { ( . v , , - 1  --a:,~):p~l __ (.~,, __ au 1}, (1)  

where x n is the displacement of an atom, which is assigned subscript n, relative to its 
equilibrium position, ~ile p is an integer that is not zero (subject to certain reserva- 
tions, the constructions given below can be extended to the case of arbitrary nonnegative 
value of p). Equation (i) does not contain a linear component. This feature of the force 
interaction occurs for example in the transverse component of the vibrations in a rectilinear 
atomic chain, where the lowest order in the dependence of the forces on the displacements 
corresponds to the third degree. Also, the role of the linear component may be secondary for 
o~ler structures with vibrations of large scale. Of course, incorporation of the components 
linear in the displacements would extend the range of real objects that correspond qualita- 
tively to (I), but in that case one does not obtain clear final formulas. On the other hand, 
solutions in the form of long-wave solitons that can be derived are of other interest, but 
the purposes differ from those of this study. Therefore, we take (i) as the starting point. 

The continuum approximation for (i) gives 

o~z 0 [ O x ~  ~p+x 
0 7  = = ~ ~'~'n J " (2) 

Considerations of scale invariance for (2) suggest that it is desirable to seek the 
solutions in the form 

x (n ,  t) = 1(~), ~ = n t - i / (P+l ) .  (3) 

Substitution of (3) into (2) reduces the latter to an ordinary differential equation: 
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p+=, dt , r X/ 
(p + I)" ~ u~ -' (p-i--1) :~ (1~ ::~-~--~ \ ~ 1  " (4) 

We multiply (4) by 

Id/ d~ I-.,'cp+~, 

to reduce it to an equation in first-order total differentials for the modulus of the deriva- 
tive of f with respect to ~, which gives 

y~'~ = B~ ~ -  C , y - :  (~"~~, g - I d!',d~ l, B = 1'[~ (2p + 1)1, (5) 

where C~ is an arbitrary constant. 

Equation (5) is an algebraic equation in the expression y2/(p+2) of degree (p +I) 2, 
from which one gets an explicit expression for y and consequently also for f. 

Equation (5) defines a certain set of forms for the displacement developing in time and 
space. For definiteness we consider the form that corresponds qualitatively to concepts on 
the course of the process after a localized impetus and also to analysis of the solutions 
for the corresponding linear cases. 

In the region of positive values of g and C~, the v =y(E) dependence given by (5) has 
two branches, whose asymptotic forms for G § are ~/P,'$-(P+=), and the region of existence 
of the solutions is bounded by the condition 

The solution determining the absence of displacements at small times and at large dis- 
tances from the point n =0 corresponds to the branch decaying for ~ § Therefore, the dis- 
tribution of the displacements in the peripheral region of space is defined by 

x(n. t)~ (p -F l)(-y); c;,(;,+~" t p--2 (~)(._,;..~+~;,+.0/.,__ ;(~;,'-'+5p-~-4),;0,+,) (6) 
�9 Jd '+1 2C 1 ('21;' " .  51, -~- ;0 ."~,~+~r,-! 3 

Equation (6) is only approximate because one cannot solve the algebraic equation of 
high degree (5) exactly. Of course, one can write more accurate formulas for the displace- 
ment law quantitatively. However, incorporation of the latter terms in (6) is significant 
only for the immediate neighborhood of the boundary ~ =5o and does not alter the qualitative 

picture of the distribution. 

Expression (6) for t +0 gives zero ever~zhere apart from the region n ~0, which means 
that the relationship corresponds to the development of nonstationary displacements after an 
initial localized displacement at n =0. The boundary of the region where the distribution 

of (6) applies moves in space with speed 

v = l$o/(P + l ) ] t -J ' /o '+l) .  ( 7 )  

Formula (7) defines the scale of the propagation speed for the bunch of displacements, 
i.e., it can be considered as the analog of the speed of sound. It should be noted that 
although the case p =0 requires certain reservations within the framework of this treatment, 
the value of v calculated for this case from (7) coincides with the speed of sound in the 

literal meaning of that concept. 

The energy flux at point n at time t is defined in this approach by 

We see from (5)-(7) that the basic scale characteristics are dependent on C,, which 
was introduced as an arbitrary constant. Physically, this quantity is determined by the 
level of the initial excitation and can be calculated for example from (8) for some nominal 
initial value of j. A reduction in CI implies a reduction in the scale of the displacements 

and the velocity v. 

In the region ~ <~($1f~o), the displacement distribution is determined by (5) also, 
where however the arbitrary constant is to be taken as negative. The choice of this constant 
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and of constants ~i is determined by the requirement for continuity in the energy and momen- 
tum fluxes at the boundary ~ =~i in a coordinate system where this boundary is at rest. 

On passing from the functions y to the displacements x, it becomes possible to vary a 
further arbitrary constant for the internal zone of the distribution, so clearly the distri- 
bution can always be made continuous. Discontinuities in the derivatives of the functions 
at the boundary between the internal and external zones should not cause surprise, since 
this feature is directly related to the essence of our view on the nature of this boundary 
as a certain front of shock-wave type corresponding to a traveling kink in the displacement 
distribution. 

One can see that the distribution of the displacements in this nonlinear structure dif- 
fers from that occurring in the linear case, where a perturbation will propagate without 
distortion at a constant speed. In the structure considered here, the motion of the dis- 
placement bunch slows down, while the profile of the distribution flattens out, while retain- 
ing the characteristic scale of the displacements defined by f($i). 

In a nonlinear medium, the displacements may also occur in such a way that the maximum 
displacement at all times corresponds to n =0, while the asymptotic behavior for t § of all 
the atoms corresponds to displacement of the structure as a whole by the displacement occur- 
ring at n =0. This form does not have an analog in a continuous linear structure, but it is 
similar to a considerable extent to the atomic displacements occurring in a discrete linear 
chain. 

Note that these constructions do not require that there should be a fixed boundary ~ 
between the peripheral and central zones. Also, we can speak of a displacement distribution 
containing several kink points in f(~) and including possibly parts where f =const. The 
structure may also be nonconservative and correspond for example to continuous energy input 
at n =0. The values of ~ corresponding to the boundaries of the parts are determined by the 
conservation laws. The realization of any particular form of the process is determined by 
the conditions of the initial excitation. 

The most important conclusion from this study is the prediction that a shock front 
exists in the propagation of the displacements, which in some forms corresponds to maximal 
nonstationary stresses in the structure, and this evidently is responsible for the production 
of defects on shock loading of a solid and also for the shock strength. 
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